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Abstract

One of the most widely adopted and studied strategies for vibration control both in civil and in mechanical engineering is

based on the use of tuned mass dampers (TMD) devices. Many conventional optimization criteria of mechanical

parameters have been proposed, based on different approaches typically of a ‘‘conventional’’ type; in other words, they are

based on the implicit assumption that all parameters involved are deterministically known. Removing this hypothesis

means to convert a conventional optimization into a robust one, so that the solution must be able not only to minimize a

performance but also to limit its variation induced by uncertainty in system parameters. In this work, a robust optimal

design criterion for a single TMD device is proposed. The analyzed case concerns the structural vibration control of a main

system subject to stochastic dynamic loads by a single linear TMD. The dynamic input is represented by a random base

acceleration, modelled by a stationary filtered white noise process. It is assumed that not only mechanical parameters

regarding main structure and TMD but also input spectral contents are affected by uncertainty. The problem is treated

characterizing all uncertain parameters by a nominal mean value and a variance. It is also assumed that all these

parameters are statistically independent. The protected main structure covariance displacement (dimensionless by dividing

for the unprotected one) is adopted as the deterministic objective function (OF). Its mean and standard deviation are

evaluated to perform the robust design. Robustness is formulated as a multiobjective optimization problem, in which both

the mean and the standard deviations of the deterministic OF are minimized. Comparisons with a conventional approach

based on the same OF show that the robust approach induces a significant improvement in performance stability.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

An important task in the field of structural optimization is the response evaluation when dispersion of
system parameter values is considered. Uncertainty of structural problems could attain many elements, which
are considered deterministic in standard structural analysis, such as loads intensity or mechanical and
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Nomenclature

AS structural system matrix
A;di

derivative of the state matrix A

A0;di
derivative of the state matrix A0

A0 state matrix of the unprotected structure
b̄ design vector
B0 matrix of the Lyapunof equation for the

unprotected structure
B;di

derivative of matrix B

B0
;di

derivative of matrix B0

B matrix of the Lyapunov equation for the
protected structure

C damping system matrix
d̄ vector collecting the uncertain para-

meters
K stiffness system matrix
M mass system matrix
RZZ state space covariance matrix
RZ0Z0

unprotected main structural state space
covariance matrix

S0 power spectral density intensity of white
excitation at the bed rock

Tf filter period
Ts main system period
w(t) stationary Gaussian zero mean white

noise process
€ybðtÞ acceleration that excites the system at the

base
ys relative displacement of the main struc-

ture
yT relative displacement of the TMD

Yf (t) displacement process of the filter

€̄Y ðtÞ relative base acceleration vector
Ȳ ðtÞ relative base displacement vector

_̄Y ðtÞ relative base velocity vector

€̄Y bðtÞ stationary input base acceleration
€Y f ðtÞ relative acceleration process of the filter

_̄Y f ðtÞ velocity process of the filter

Z̄sðtÞ state space vector of the main structure-
TMD system

Greek letters

bi sensitivity coefficient
mx nominal mean value of the variable x

Z ratio between the TMD and main struc-
ture masses

rx correlation of the variable x

sX S
standard deviation of maximum displa-
cement of the protected structure

s0X S
standard deviation of maximum displa-
cement of the unprotected structure

xf filter damping
xs damping of the main structure
xT damping of the TMD
rx variation coefficient of the parameter x

C frequency ratio
of base filter frequency
os main structural circular frequency
oT tuned mass damper circular frequency
O admissible domain of the design para-

meters
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geometrical configurations. A typically simplified approach is that where the only source of randomness is
assumed to be dynamic load with a stochastic nature, as in case of earthquake or wind actions. The actions can
be modelled by a stochastic process and the standard random vibration theory can be used [1] when all the
other motion equation parameters are considered deterministic. This approach gives structural response
characterization completely described by stochastic processes with deterministic parameters. Under these
assumptions, a ‘‘conventional’’ stochastic structural optimization (CSSO) could be performed in the sense that
except for load nature, all the other parameters involved are assumed as unaffected by any uncertainty source.
In the field of random vibration, the first definition of structural optimal problem was proposed by Nigam [2],
leading to a standard nonlinear restraint problem in which restraints were defined by probabilistic structural
response indexes while the objective function (OF) by structural weight. The use of a defined stochastic OF
was later proposed for optimal damping design in the domain of seismic protection [3]. The optimal damping
value of a device placed on the first story of a building was determined by minimizing an OF defined by the
maximum structural displacement under white noise excitation. More recently, a specific and more complete
stochastic approach has been proposed by Takewaki [4], in order to obtain a stiffness-damping simultaneous
optimization of structural systems. The sum of mean square responses due to a stationary random excitation is
minimized under constraints on total stiffness capacity and total damper capacity. An interesting alternative
stochastic approach for damping devices optimum design has been proposed by Kwan-Soon et al. [5] to
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minimize the total building life-cycle cost. It is based on a stochastic dynamic approach for failure probability
evaluation, while the OF is defined in a deterministic way. The conventional stochastic optimization problem
is also formulated by adopting the location and the amount of the viscous-elastic dampers as design variables
[6]. Constraints are the maximum inter-storey drifts evaluated by the first crossing theory application in non-
stationary conditions. Another interesting work regards unrestricted optimization of single nonlinear [7] and
multiple linear [8] tuned mass dampers (TMD) by using as OF the structural displacement covariance of the
protected system where input is treated by a simple stationary white noise. A complete stochastically defined
CSSO is proposed by Marano et al. [9]. In this latter work, a based-optimum criterion is developed by
adopting a covariance reliability approach. Both the OF and constraints are defined in a stochastic way. In
detail constraints impose a limit to failure probability associated with the first threshold crossing of structural
displacement.

It is rather clear that the implicit assumption that uncertainties in a structural system have negligible
effects on response is a further simplification in many real situations. However, it was reported that the
uncertainty in structural parameters might have equal or even greater influence on the response than the
uncertainty in excitations [10]. This could be particularly significant for those cases where solution is
strongly influenced by system parameters variation, as for structural optimization. For example, design
of civil structures in seismically active regions requires consideration of both the uncertainty in e
arthquake ground motions and the uncertainty of design-base structural models. This problem is
challenging and only a limited number of publications deals with both uncertainties, for example,
Refs. [11–17].

The treatment of uncertainty in engineering and in structural design is still an open question
and the scientific literature offers different approaches based on dissimilar mathematical models. The
probabilistic technique, here used, most common one, not only for confidence that engineers have
with this approach, but also because different ways have been proposed and applied, as fuzzy and interval
analysis, just to cite a few (for example, see Ref. [18]). But the main point in this field is that there
is no mathematical and engineering certainly on the best way to have knowledge of uncertainty. Typically,
the probabilistic approach is the most complete, being its information more detailed in comparison
with the other methodologies. But the main engineering difficulty is in obtaining enough information
to be confident on the adopted probabilistic model. Nevertheless, the selection of a specific probability
density function is a hard problem. In these cases, alternative approaches may be used to overcome this
limitation.

Thus, for a more realistic analysis, system parameters must be treated by a suitable description of
uncertainty that afflicts their nominal values. Because of different uncertain factors in materials, measurement,
manufacturing and installment, practical structures in mechanical or civil engineering are often more
realistically described by random variables. For the same reason also safe domain and input process
parameters, as power spectral density, have to be treated as uncertain quantities.

This means that CSSO may not achieve or may be infeasible due to the scatter of structural behaviour.
Therefore, it is reasonable to explore the effects of uncertainty on the design of structures subject to random
vibrations. For this reason, in the last 20 years, various non-deterministic methods have been developed in
order to deal with optimum design under environmental uncertainties.

These methods can be classified into two main approaches, namely reliability-based methods and robust

design-based methods:
�
 Reliability methods estimate the probability distribution of the system’s response based on the known
probability distribution of the random parameters. They are mostly used for risk analysis by computing the
probability of the failure. However, the variation is not minimized in the reliability approach [19], which
concentrates on the rare events at the tails of probability distribution [20].

�
 Structural robust design (SRD) optimizes a performance index in terms of mean value, and at the same time

it minimizes its variability resulting from environmental uncertainty. The final solution is less sensitive to
the parameters variation, while maintaining eventually feasibility with probabilistic constraints. This is
achieved by optimizing the design vector (DV) in order to make the performance minimally sensitive to the
different causes of variation.
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Hence, robust design concentrates on the probability distribution close to the mean value. Thus an
SRD solution is not able to give the best performance in an absolute sense but it provides a lower
sensitivity to uncertainty. Recently a robust design of a vibration absorber, with mass and stiffness
uncertainty in the main system, is used to demonstrate the robust design approach in dynamic as proposed by
Zang et al. [21]. It is based on a frequency approach and it assumes that input is a band-limited white noise.
Uncertainty is defined by mean and covariance, and it concerns with main system mass and damping. As local
performance index is used the maximum over a limited frequency band of the dimensionless displacement
transfer function, and the robust optimization has been obtained by minimizing its deviation in mean and
variance. This optimization is obtained by a direct first-order perturbation method based on a Taylor-series
expansion.

In this paper, the practicable applicability of the proposed robust optimization is shown by means of a
single TMD device on a single-degree-of-freedom (sdof) system in order to evaluate the global effectiveness of
the method, under earthquake excitation. Even if the structural analysis of a general N-dof system protected
by a TMD device must be placed as an N+1 degree of freedom system mechanical model to be carried out in
the dimensional space under general conditions, let us observe that a single TMD can only be tuned to a single
structural frequency. Therefore, it is expected that its effectiveness is the greatest if an N degrees of freedom
structural system oscillates around a predominant mode [22].

Therefore it is quite common considering only one main structural vibration mode, typically the first one, as
descriptive of the protected element vibration for the TMD optimal design.

The TMD is introduced in order to guarantee a suitable protection level in the primary structure
for both the structure and its contents, towards a defined limit state. Its mechanism of attenuating
detrimental vibrations of a structure is to transfer the vibration energy of the structure to the TMD, and to
dissipate the energy through the damping of the TMD. A multiobjective approach for robust design
of TMD system is presented. The structural configuration is represented by a primary viscous-elastic
system subject to a base acceleration. This last is modelled by a stationary filtered white noise stochastic
process. The primary element is protected by a linear single TMD against vibration induced by base
acceleration. It is assumed that uncertainty in problem parameters deals with primary system frequency
and damping and base excitation spectral contents. The DV here used contains the TMD frequency and
damping, and the ratio between the protected and the unprotected standard deviation of the main system
displacements is used as OF. The robust solution is obtained by multiobjective criteria where optimization is
achieved by minimizing both the OF mean value and standard the deviation. Indeed, it is demonstrated that
the design optimizes the structural performance if also minimizes its robustness to uncertainty. Mean and
covariance OFs are here obtained by applying the direct perturbation method (DPM) first-order
approximation. A non-dominated sorting in genetic algorithm (GA) in its second version (NSGA-II)
(a Pareto-based multiobjective evolutionary algorithm) is used in order to evaluate the set of possible
solutions. Finally, a comparison between conventional deterministic and robust stochastic optimal solutions
is shown.

2. Linear elastic TMD system subject to stationary base random vibration

The concept of passive structural control is widely accepted and it has been frequently applied to
civil and mechanical structures. Among the numerous passive control methods available, the TMD is
one of the simplest and one of the most reliable control devices, not only for new structures but also
for existing ones. The principle of vibration absorber was attributed to Frahm [23] who found that a
natural frequency of a structure could be split into two frequencies by attaching a small spring–mass system
tuned to the same frequency as the structure. It is composed of mass, a spring and a damper (Fig. 1), and is
widely used as a passive control device in practical application for suppressing the undesirable vibration
mainly due to its simplicity and high reliability. Its mechanism of attenuating undesirable vibration of a
structure is to transfer the vibration energy of the structure to the TMD and to dissipate the energy through
the damping of the TMD. In civil engineering applications, the oscillator could be a high-rise building, bridge
or offshore platform. The use of a TMD would be intended to reduce wind, earthquake or wave-induced
vibrations.
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Fig. 1. Linear scheme of TMD system.
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In case of a TMD system excited by a base acceleration, the structural response is determined by solving the
dynamic equilibrium system equations

M €̄Y ðtÞ þ C _̄Y ðtÞ þ KȲ ðtÞ ¼ r̄ €ybðtÞ, (1)

where Ȳ ¼ ðyS; yT Þ
T is the relative base displacement vector, and M, C and K are the mass, damping and

stiffness symmetric matrices.
Introducing the state space vector

Z̄s ¼ ðyT ; yS; _yT ; _ySÞ
T, (2)

system could be replaced by

_̄ZsðtÞ ¼ ASZ̄sðtÞ þ r̄z €ybðtÞ, (3)

where

As ¼
0 I

H1
s H2

s

 !
(4)

is the structural system matrix, r̄z ¼ ð0; 0; 1; 1Þ
T, I and 0 the unit and zero 2� 2 matrices, respectively, and

H1
s ¼M�1K ¼

�o2
T þo2

T

þZo2
T �ðZo2

T þ o2
SÞ

 !
, (5)

H2
s ¼M�1C ¼

�2xToT þ2xToT

þZ2xToT �ðZ2xToT þ 2xSoSÞ

 !
, (6)

where the system mechanical parameters are

oT ¼

ffiffiffiffiffiffiffi
kT

mT

s
, (7)



ARTICLE IN PRESS
G.C. Marano et al. / Journal of Sound and Vibration 313 (2008) 472–492 477
oS ¼

ffiffiffiffiffiffiffi
kS

mS

s
, (8)

xT ¼
cT

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mT kT

p , (9)

xS ¼
cS

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mSkS

p , (10)

Z ¼
mT

mS

. (11)

The load €ybðtÞ represents the acceleration that excites the system at the base. Due to the fact that it can be
modelled as a stochastic process, many advantages could be reached if it is filtered by a white noise.

For base random accelerations modelling, a widely adopted model in both stationary and non-stationary
cases is that obtained by a simple linear second-order filtering of the white noise process. It is able to
characterize input frequency modulation for a wide range of practical situations, and in case of non-stationary
input it is able to model not only amplitude but also frequency contents time variation. For the general case of

stationary input base acceleration, €̄Y bðtÞ is expressed as

€̄Y f ðtÞ þ 2xf of
_̄Y f þ o2

f Ȳ f ¼ �wðtÞ;

€̄Y bðtÞ ¼ €̄Y f ðtÞ þ wðtÞ ¼ �ð2xf of
_̄Y f þ o2

f Ȳ f Þ;

8<
: (12)

where w(t) is a stationary Gaussian zero mean white noise process whose intensity is given by S0,
1 representing

the excitation at the bed rock, of is the base filter frequency and xf the filter damping.
The global state space vector is

Z̄ ¼ ð yT yS yf _yT _yS _yf Þ
T. (13)

The state space covariance matrix RZZ is then obtained as solution of the Lyapunov equation, which in this
case is represented by a 6� 6 order algebraic matrix equation:

ARZZ þ RZZA
T
þ B ¼ 0, (14)

where

A ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�o2
T þo2

T þo2
f �2xToT þ2xToT þ2xf of

þZo2
T �ðZo2

T þ o2
SÞ þo

2
f þZ2xToT �ðZ2xToT þ 2xSoSÞ þ2xf of

0 0 �o2
f 0 0 �2xf of

0
BBBBBBBBBB@

1
CCCCCCCCCCA
. (15)

And the 6� 6 matrix B has all null elements except for the last one on the main diagonal:

½B�6;6 ¼ 2pS0. (16)

The unprotected main structural response in covariance 4� 4 matrix RZ0Z0
is valuable in the same way:

A0RZ0Z0
þ RZ0Z0

AT
0 þ B0 ¼ 0, (17)

where the state space vector and system matrix are now

Z̄0 ¼ yS yf _yS _yf

n oT

, (18)
1E½wðtÞwðt� tÞ� ¼ 2pS0dðt� tÞ.
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A0 ¼

0 0 1 0

0 0 0 1

�o2
S o2

f �2xSoS 2xf of

0 �o2
S 0 �2xf of

0
BBBB@

1
CCCCA (19)

and finally the 4� 4 matrix B0 has all null elements except for the last one on the main diagonal that is

½B�4;4 ¼ 2pS0. (20)

Moreover, previous formulation deals with the assumption that all structural parameters have a
deterministic nature but this usually is an unrealistic assumption if referred to many real cases.

In this work, three structural parameters are modelled as afflicted by uncertainty:
�
 the main structural circular frequency oS,

�
 the main structural damping xs,

�
 the ratio between the TMD and the main structure masses Z.
The first one is often quite difficult to predict accurately. The actual values are usually determined by full-
scale measurements after the structure is constructed and may vary with time. For this reason, it is desirable
that the natural frequency of the TMD be tunable on site [24]. The main system damping, as known, has a
very limited influence on optimal TMD parameters, as observed by different authors [6,25], and then a little
uncertainty has generally been assumed. Nevertheless, there is almost uncertainty about main system energy
dissipation during the dynamic motion of mechanical systems and then the components of damping matrix are
typically afflicted by inconfident evaluation. Finally, also the mass of the main system may be affected by
significant variations during the service life of the mechanical systems, especially if it represents a civil
structure such as buildings and bridges.

3. Probabilistic characterization of uncertain system parameters

The most common approach in modelling of the uncertain structural parameters, is using probability
analysis so that each uncertain parameter is treated as a random variable characterized by standard
distribution. This means that the problem must be solved by using a multidimensional Joint Probability

Density Function of all the involved parameters. Nevertheless, this way often offers serious analytical and
numerical difficulties. Moreover, it also presents some conceptual limitations because the complete uncertain
parameters stochastic characterization presents a fundamental limitation that is related to the difficulty of a
complex statistical analysis that cannot be justified in the common real situation characterized by the absence
of detailed statistical input data. A simplification is usually given by assuming that all variables have
independent normal or lognormal distributions as application of limit central theorem, but this way does not
overcome the previous problem. On the other side, it is quite usual to approach real situations where it is only
possible to estimate the mean and variance of each uncertain parameters being not possible to have more
information about their real probabilistic distribution. Then, this specific case is treated assuming that all
uncertain parameters that are collected in vector d̄ are characterized by a nominal mean value mdi

, and a
correlation

rdi
¼

sdi

mdi

. (21)

Structural parameters assumed as uncertain are the main system frequency oS and damping xS and the mass
ratio Z.

Moreover, also the two filter parameters of and xf are assumed uncertain, so that both of them are
characterized by a variance more than nominal value.

Therefore, the uncertain parameters vector d̄ is composed by the following elements:

d̄ ¼ ðoS; xS; Z;of ; xf Þ. (22)
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For the sake of simplicity in the remaining part of the paper, the mean value of each uncertain element will
be simply indicated by its nominal symbol:

mdi
¼ di.

4. Conventional and robust optimum design of TMD subject to random vibration

The optimization problem for a structure subject to random vibrations could be formulated as the search of
a suitable set of variables (that are the parameters of the design characterizing structural configurations),
collected in the so-called DV b̄, over a possible admissible domain X. The optimal DV must be able to reduce
the vibration induced under an acceptable level, minimizing a given OF (defined by using deterministic or
statistic entities) and also satisfying particular constraints, expressed in terms of structural reliability. Both
reliability constraints and OF must be defined over a given time interval, as the problem regards dynamic
structural response.

Two possible approaches can be performed to solve the structural optimization problem: one of
conventional type, in which only the loads are considered affected by uncertainty, or a robust optimization,
based on the assumption that also the system parameters are uncertain.

4.1. The conventional CSSO

The conventional optimization problem so defined and first stated by Nigam for a system subject to random
vibrations [2], can be transformed into a standard nonlinear programme that is stated as

find b̄ 2 Xb, (23)

that minimize OFðb̄; tÞ, (24)

subject to giðb̄; t Þp0 ði ¼ 1; 2; . . . ; kÞ, (25)

where the OF could be defined by a standard deterministic way (for example total structural weight or
elements volume) or in a stochastic one. In this last case, statistic entities could be used as covariance or
spectral moments of variables of interest (for example displacement, acceleration or structural stress in
relevant elements). Also, restraints could regard spectral or statistical moment or, in a more realistic way,
reliability limitations, as for example in the following form:

Pf ðb̄;TÞ � Padm
f p0, (26)

where Padm
f is the maximum admissible failure probability that could be accepted by designers, and Pf ðb̄;TÞ is

the evaluated structural probability of failure during the lifetime [0,T].
In this specific case, the optimal mechanical parameters of a TMD are represented by the two-dimensional

DV b̄:

b̄ ¼ ðoT ; xT Þ
T, (27)

having assigned the fixed mass ratio Z and the main system frequency oS.
It is determined by minimizing the variance of main mass displacement with respect to the base.
The OF is thus defined in a dimensionless way as the ratio between the standard deviation of maximum

displacement of the protected structure sX S
and the unprotected one s0X S

:

OF ¼
sX S

s0X S

. (28)

This function represents a direct stochastic index of vibration protection effectiveness that shows protection
effectiveness when its value is smaller than one. At the same time, a value of the OF close to the unit indicates
practically negligible effects in vibration control (greater values are for negative TMD effects, increasing main
structure displacements). The CSSO is performed assuming that all parameters involved in the problem are
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Fig. 2. Deterministic OF surface in the dimensionless DV space (oTMD/oS) and xTMD. Forcing input is characterized by xf and of. Main

system parameters are circular frequency oS, damping ratio xS and mass damping Z.
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deterministic, and the unrestricted approach of Eqs. (23) and (24), is for this specific case:

find b̄ ¼ ðoT ; xT Þ 2 <
2
þ, (29)

that minimize
sX S
ðb̄Þ

s0X S

. (30)

This approach is able to furnish a global minimum value, as can be seen in Fig. 2.

4.2. The robust structural optimization

As stated before, for design of structures with parameters stochastically defined and subject to random
dynamic loads, one possible approach is to define the optimal conditions, as the mean value, of that
corresponding deterministic parameter conditions. However, the optimal solution obtained by minimizing the
expected value of the OF, defined in Eq. (24), may be quite sensitive to the fluctuation of stochastic
parameters, causing scatter of the performance. Thus, a more robust design concept has to be adopted to
overcome this limitation. In the proposed case of an unconstraints optimization problem, a larger deviation of
structural performance from its usually expected value takes place. A solution that could be defined as
‘‘robust’’ is that which characterizes completely the OF as a random variable and then it can be completely
described by mean of the knowledge of its probability density function. Nevertheless, this way presents many
difficulties and it can be found in an analytical form only in few cases. To overcome this limitation, the
complete OF statistical description is replaced by the knowledge of its first two statistic moments, the mean
value and the variance. One of the simplest approaches for calculating the effects of the uncertainties
parameters is the DPM, which consists in approximating the response as a polynomial of the uncertain
parameters (see, for example, Ref. [1]). More precisely, the polynomial is a Taylor series about the nominal
mean values of the uncertain parameters. Only the knowledge of mean and covariance of uncertain parameters
is required.

If Rðd̄Þ denotes the generic stochastic structural response, which depends on the uncertain parameter vector
d̄ (displacement, velocity, acceleration, reliability, etc.), the linear approximation of the DPM furnishes its
mean value and variance as described in the following:

m½R�lin ¼ Rðmd̄Þ, (31)
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sRlin
¼
Xnd

i¼1

Xnd

j¼1

ðbibjÞ cov½didj�, (32)

where nd is the dimension of the uncertain element vector, and bi ¼ ðqR=qdiÞd̄¼m̄D
are the sensitivity coefficients

evaluated for the mean value of vector d̄. This last formulation takes considerable simplifications if vector d̄

components are assumed as statistically independent (and therefore uncorrelated). Eq. (32) becomes, in this
specific case, as follows:

sRlin
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnd

i¼1

b2i s
2
di

s
. (33)

With reference to the OF defined in Eqs. (30), Eqs. (31) and (32) become

mOFðd̄; b̄Þ ¼ OFðmd̄ ; mb̄Þ, (34)

sOFðb̄; d̄Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnd

i¼1

q
qdi

OFðb̄; d̄Þ

� �2

m
d̄

s2di

( )vuut , (35)

where sdi
is problem data, and

q
qdi

OFðb̄; d̄Þ

� �����
md

¼
ðsX S
Þ;di

sX 0
S
� sX S

ðsX 0
S
Þ;di

s2
X 0

S

, (36)

where ð�Þ;di
¼ ðd � =dðdiÞÞ.

The two terms in Eq. (36) directly obtainable from Eqs. (14) and (17) are

sX S
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½RZZ�2;2

q
, (37)

sX 0
S
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½RZ0Z0

�1;1

q
. (38)

The other two quantities that are their first derivative are obtainable:

ðsX s
Þ;di
¼

dsX s
ðd; bÞ

dðdiÞ

� �
¼

1

2

ð½RZZ�22Þ;diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½RZZ�22

p , (39)

ðsX 0
s
Þ;di
¼

dsX 0
S
ðd; bÞ

dðdiÞ

 !
¼

1

2

ð½RZ0Z0
�11Þ;diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½RZ0Z0
�11

p . (40)

Both are obtained by deriving the original ones (14) and (17), so that it furnishes R;di
:

ARZZ;di
þ RZZ;di

AT
þ Ci ¼ 0, (41)

A0RZ0Z0;di
þ RZ0Z0;di

AT
0 þ C0

i ¼ 0, (42)

where

Ci ¼ A;di
RZZ þ RZZA

T
;di
þ B;di

, (43)

C0
i ¼ A0;di

RZ0Z0
þ RZ0Z0

AT
0;di
þ B0

;di
, (44)

where A;di
and A0;di

are the derivative of state matrices A and A0 with respect to each uncertain parameter.

Moreover, both B;di
and B0

;di
are null matrices for all the vector d̄ elements, so that both Equations (43) and

(44) can be simplified. In this way, all quantities in equation relative to generic structural response are known,
and it is possible to obtain the linear approximation of the OF mean value and variance in case of system
parameters and frequency input content uncertainty. In this case, a possible way for the task of robust optimal
structural design is to minimize dispersion of the OF by multicriteria measures of goal performance.
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SYSTEM DATA

B     B0 A     A0
For i=1 to nd
A,di        A0,di

AR+RAT+B
A0R0+R0A0

T+B0

For i=1 to nd

Ci=A,diR+RA,di
T

C0
i=A0,diR0+R0A0,di

T
R     R0

For i=1 to nd

AR,di+R,di
T+Ci

A0R0,di+R0,di
TA0+C0

i

R,di     R0,di

Fig. 3. Flow chart for evaluation of state space covariance matrices and its first derivatives, referred to the protected and unprotected

configurations.
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By adopting this formulation, the proposed problem becomes a vectorial minimization one, in which the two
conflicting criteria are the mean value and the variance/standard deviation of the OF, that is:

find b̄ 2 Xb, (45)

that minimize fmOFðb̄Þ;sOFðb̄Þg. (46)

The schematic flow chart to obtain covariance matrices and their first-order sensitivities of protected and
unprotected structure is represented in Fig. 3.

5. Methods for multiobjective optimization problem (MOOP)

Many real engineering problems often involve several OFs in conflict with each other and for them it is not
possible to define a universally approved criterion of ‘‘optimum’’ as in single objective optimization problem.
Therefore, in MOOP the aim is to produce a set of good compromised solutions, among which the decision
maker selects one [21]. Thus, optimization could be obtained by assuming that only one ‘‘effectiveness’’ index
must be minimized, and that the others must be considered as problem constraints. Moreover, the definition of
the best index to be minimized and the selection of the indices that must be transformed in constraints, has not
a single definition. The above-mentioned question depends strongly on designer opinion and experiences. On
the contrary, the multiobjective optimization gives to the designer the opportunity to evaluate a set of possible
solutions, defined as those able to satisfy in the best way and with different performances all the required
efficiency indices defined by designers. The definitions of these solutions are usually known as the Pareto

dominance and Pareto optimality criterion that constitute a basic point in the MOOPs. With reference to the
Pareto optimality definition, it assumes that a DV b* is Pareto optimal if no feasible vector b exists, which
would decrease some criterion without causing a simultaneous increase in at least one other criterion.
Unfortunately, this concept almost always gives not a single solution but rather a set of solutions called the
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Pareto optimal set. The vectors b* corresponding to the solutions included in the Pareto optimal set are called
non-dominated. Generally, Pareto concepts (‘‘Pareto dominance’’ and ‘‘Pareto optimality’’) constitute very
important notions in MOOPs.

Without loss in generality, a typical minimization-based MOOP is assumed. Given two candidate solutions
{dj, dk}, if

8i 2 f1; . . . ;Mg;OFiðdjÞpOFiðdkÞ ^ 9i 2 f1; . . . ;Mg : OFiðdjÞoOFiðdkÞ (47)

defined the two objective vectors

vðdjÞ ¼ fOF1ðdjÞ; . . . ;OFMðdjÞg, (48)

vðdkÞ ¼ fOF1ðdkÞ; . . . ;OFMðdkÞg, (49)

vector v(dj) is said to dominate vector v(dk) (denoted by v(dj)!v(dk)).
Moreover, if no feasible solution (v(dk)) exists that dominates solution v(dj), then v(dj) is classified as a non-

dominated or Pareto optimal solution. In a more simple way, b̄j 2 Xb̄ is a Pareto optimal solution if exists
no feasible vector b̄k 2 Xb̄, which would decrease some criterion without causing a simultaneous increase in at
least one other criterion [26]. The collection of all Pareto optimal solutions are known as the Pareto optimal

set or Pareto efficient set, instead the corresponding objective vectors are described as the Pareto front or
Trade-off surface.

Normally, the decision about the ‘‘best solution’’ to be adopted is formulated by the so-called (human)
decision maker (DM). Extremely rare is the case in which the DM does not have any role and a generic Pareto

optimal solution is considered acceptable (no-preference-based methods). On the other hand, several preference-

based methods exist in the literature, although this particular face of research tends to have been somewhat
overlooked. A more general classification of the preference-based method considers when the preference
information is used to influence the search [27]. Thus, in a priori methods, DM’s preferences are incorporated
before the search begins; therefore, based on the DM’s preferences, it is possible to avoid to produce the whole
Pareto optimal set. In progressive methods, the DM’s preferences are incorporated during the search: this
scheme offers the sure advantage of driving the search process but the DM may be unsure of his/her
preferences at the beginning of the procedure and may be informed and influenced by information that
becomes available during the search. A last class of methods is that a posteriori: in this case the optimizer
carried out the Pareto optimal set and the DM chosen a solution (‘‘search first and decide later’’). Many
researchers view these approaches as standard so that, in the most greater part of the circumstances, an
MOOP is considered resolved once all Pareto optimal solutions are individualized. For instance, an extremely
diffused a posteriori approach is denominated as Aggregating functions in which multiple objectives are
combined into a single one. In this field, Weighted Sum Method is frequently adopted [28]: it consists of a
single linear combination of individual objectives and a scalar parameter (so-called weighting coefficient) is
used with different values in order to define the Pareto front. This method, as well as other Aggregating
functions techniques, are not efficient for MOOPs because they are not able to find multiple solutions in a
single run and multiple runs do not guarantee the definition of the true Pareto front [29]. Moreover, in the
category of a posteriori approaches, Evolutionary Multi-Objective Optimizations are diffused. In Ref. [30] an
algorithm for finding constrained Pareto optimal solutions based on the characteristics of a biological immune
system (constrained multi-objective immune algorithm (CMOIA)) is proposed. In the field of EMOO, the
most adopted algorithms are the multiple objective genetic algorithm (MOGA) [31], and the non-dominated
sorting in genetic algorithm (NSGA) [32].

Particularly, in this work we adopt the NSGA-II, which is a new and modified version of the original NSGA
method [33]. In Section 6, the principal characteristics of the algorithm for the resolution of the MOOP
formulation are presented.

6. NSGA-II model for multiobjective optimization

NSGA-II is a diffused Pareto-based multiobjective evolutionary algorithm. In this section, we will analyze
the fundamental aspects of the algorithm used for the resolution of MOOP formulated above. In order to use
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the decision variables directly, without coding, a real coded GA is used. The use of a real parameter is a
powerful tool because it offers different advantages. In fact it is possible to make use of large domains for
variables and to exploit the graduality of the functions with continuous variables [34]. The most important
innovation introduced by NSGA-II is the sorting approach [33]. The population is sorted based on rank and
crowding distance. In this way, it is possible to assign rank 1 for each individual of the first front where it finds
non-dominated individuals. The second front is composed of the individuals (with rank 2) dominated by the
individuals of the first front. The procedure is the same for each other front, with a progressive rank assigned.
Behind, the algorithm calculates the crowding distance: this is a parameter that individualizes how close an
individual is to its neighbours. Obviously, between two solutions with different non-domination ranks, the
best point is that with a lower rank, but if both points belong to the same front we prefer the point that is
located in a region with less number points. Reproduction (or Selection) is the first operator applied to
population: particularly it is adopted to Binary Tournament Selection. It works as follows [35]: choose two
individuals randomly from the population and copy the best individuals from this group into the intermediate
population and finally repeat for all individuals in the population. In this case, selection is performed on non-
domination ranks and crowding distance.

One of the most important operators in GA is Crossover. Crossover is a method for sharing information
between strings. Like the reproduction operator, there are different crossover operators in the GA literature
and generally the effectiveness of a method rather than another depends on the particular treated problem
(i.e. coded/decode strategy, constraint/unconstraint optimization problem). For binary-coded GAs, a single-
point crossover is frequently performed. With the aim to simulate the operation of a single-point binary
crossover directly on real variables, the so-called Simulated Binary Crossover (SBX) is proposed in Ref. [36]. In
this technique, the probability distribution used to create a child solution is derived to have a similar search
power as that in a single-point crossover in binary-coded GAs [34]. It is given as follows:

PðbÞ ¼

1

2
ðZc þ 1ÞbZc

k if 0pbp1;

1

2
ðZc þ 1Þ

1

bZcþ2
k

otherwise:

8>>><
>>>:

(50)

In Eq. (50), Zc is the distribution index for crossover operator and bk is the so-called ‘‘spread factor’’ [36].
The procedure is the following: a random number ukA[0,1] is generated using expression (50) and bk is
calculated with this formulation:

bk ¼
ð2ukÞ

1=ðZcþ1Þ if ukp0:5;
1

½2ð1�ukÞ�
1=ðZcþ1Þ

otherwise:

8<
: (51)

After obtaining b from Eq. (51), the children solution is calculated as follows:

c1;k ¼
1
2
½ð1� bkÞp1;k þ ð1þ bkÞp2;k�, (52)

c2;k ¼
1
2
½ð1þ bkÞp1;k þ ð1� bkÞp2;k�. (53)

In Eqs. (52) and (53), ci,k is the ith child with the kth component, pi,k is the selected parent. It should be
emphasized that with the aim to preserve some of the previously found good strings, not all strings in the
population are taken into account in the crossover operation: for this reason, crossover is performed
according to an assigned probability (crossover probability pc).

Mutation is another adopted genetic operator: its role is to restore lost or unexpected genetic material into a
population in order to prevent the premature convergence of GA: particularly, we adopt polynomial mutation.
Mutation operator is performed on one string as follows [34]:

ck ¼ pk þ ðp
u
k � pl

kÞdk. (54)

In Eq. (54), pk is the parent with pu
k and pl

k are the upper bound and lower bound on the parent component,
and ck is the child. Mutation operator is based on dk, which is calculated from a polynomial distribution.
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Table 1

NSGA-II algorithm for multiobjective optimization problem

1. Load data

� For GA
J Population size and maximum generations
J Crossover probability
J Mutation probability

� For random vibrating structure
J Input filter damping ratio and frequency (mean and variance)
J Power spectral density
J Main system frequency and damping ratio (mean and variance)
J Tuned-main system mass ratio (mean and variance)

2. Initialize population

� Generate random population in the specified admissible domain

� Calculate OFs values
J Solve continuous-time Lyapunov equations (by transformation of the matrices to the complex Schur form)

3. Sort the initialized population

� Sort the population using non-domination-sort. For each individual, rank and crowding distance are assigned

4. Loop for each generation

� Select the parents, which are fit for reproduction
J Binary tournament selection based on the rank and crowding distance

� Genetic Operators on selected parents
J Simulated binary crossover
J Polynomial mutation

� The offspring population is combined with parents (size of intermediate population is double)

� Selection is performed to set the individuals of the next generation
J Once the intermediate population is sorted, only the best individuals are selected based on its rank and crowding distance

� Create a new generation
J Constant population size

� Close loop if stop criteria for max number of generation is verified, otherwise return on the top of loop

5. Report on results
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First, a random number rkA[0,1] is generated and dk is calculated with this formulation:

dk ¼
ð2rkÞ

1=ðZmþ1Þ � 1 if rko0:5;

1� ½2ð1� rkÞ�
1=ðZmþ1Þ if rkX0:5:

(
(55)

In Eq. (55), Zm is the mutation distribution index. Also in this case, mutation operator is performed
according to an assigned probability (mutation probability pc).

Finally, in order to develop MOOP, the NSGA-II method whose scheme is shown in Table 1 has been
adopted.
7. Numerical example

In order to solve the multiobjectives optimization problem proposed, several numerical applications have
been carried out for specific levels of the main system and filter characteristics. These parameters,
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Table 2

Mean and variation coefficient of system and filter characteristics

Input data Value

Main system period (Ts) 0.45 s

Filter period (Tf) 0.35 s

Power spectral density (S0) 1000 cm2/s3

Uncertain parameters di Mean value m(di) Variation coefficient r(di)

Main system parameters

oS 13.95 rad/s 0.15

xS 0.05 0.20

Z 0.05 0.15

Filter parameters

of 18.62 rad/s 0.10

xf 0.40 0.15
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stochastically expressed by the mean and the variation coefficient, are considered to be deterministically
known. The principal aim is to incorporate uncertainties in both the load and the structural model parameters.

All data with certain and uncertain parameters are listed in Table 2:
where

the variation coefficient is : rTMD ¼
soTMD

moS

(56)

the frequency ratio is : C ¼
moS

mof

. (57)

A first analysis concerns the application of the conventional deterministic optimization method to obtain
the OF surface. In Fig. 4, the mean (a) and the variance (b) of the OF are shown in the range of rTMD and
xTMD (i.e. damping of the tuned xT) investigated.

It can be noted that both the mean and the standard deviation of the OF present extreme points that are
represented by a global minimum in the mean and by maximum in the variance trend. More in detail, the
surface of the standard deviation shows not a unique but multiple picks very close to each other. Besides, it
also can be noted that there is a quite perfect agreement between these observed pick points: for example, the
global minimum of the mean seems to correspond to the region where maximum points take place in the
surface of the standard deviation. More generally, it can be stated that when the mean of the OF increases,
arising from the minimum point observed, the standard deviation tends to decrease according to the mean
increasing. This consideration confirms the impossibility of achieving the perfect OF minimization both in
terms of mean and standard deviation, because when it is possible to reduce the first one, the second one
increases, having both of them counteracting effects with respect to the OF optimization. In fact, a more
robust optimal solution can be obtained by improving structural performance both by reducing the OF mean
value and by making more stable and less-sensitive the response to the uncertainty sources (i.e. reducing the
OF standard deviation).

The above-drawn result show that the optimal solution, obtained by minimizing the expected value of the
OF (the mean), is quite sensitive to the fluctuation of the uncertain parameters (as demonstrated by the
corresponding high values of the standard deviation).

For this reason, a multiobjective robust design concept has been adopted to overcome this limitation and to
provide more information about the structural optimization problem solution. The previous example has
demonstrated that the satisfaction of the optimization problem regards two main aspects: the first concerns the
necessity to satisfy critical performance requirements (minimizing the mean of the OF). The second one
involves the need to maximize the robustness to uncertainty (minimizing the standard deviation of the OF).
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Fig. 5. Pareto optimal fronts for different frequency ratios.

Fig. 4. Deterministic mean value (a) and standard deviation (b) of the OF for different values of rTMD and xTMD.
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Nevertheless, each criterion is in conflict with each other and for them it is not possible to define a universally
approved criterion of ‘‘optimum’’ as in single objective optimization problem. Therefore, in MOOP, the aim
is to produce a set of good compromised solutions, among which the decision maker can select. With this aim,
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a Pareto optimal set, for different uncertain configurations, has been plotted in Fig. 5 in a bi-dimensional
Pareto domain (in mean mOF and standard deviation sOF) for different values of the frequency ratio c. In the
figure, it can be seen that Pareto fronts show two main tendencies in function of the frequency ratio. These
trend are described in the following.
�
 cp1: Represents the situation in which the main system has a natural frequency smaller than that of the
TMD. In this range, the fronts appear very close one to another. In detail, the set is characterized by lower
values of the standard deviation, for a fixed mean value against the other ones. The maximum level of
uncertainty achieved, in fact, is approximately at most the 50%.

�
 c41: Represents the situation in which the main system has a frequency higher than that of the TMD

(i.e. condition that departs from the resonance). In this case the performance, expressed in terms of
multiobjective structural problem optimization, gets worse. Pareto’s fronts are characterized by larger
values of the standard deviation at a fixed mean value; besides, it can be noted that each solution lies very
far from another because of the more accented sensitivity of optimal points to the uncertainty parameters.

Another consideration concerns the shape of the fronts: they appear endowed with convexity, insofar they
would not be determinable with conventional multiobjective optimization methods like, for example, the
weighted sum method, because this last is a linear combination of the objectives. Instead the application of an
evolutionary optimization problem approach in the Pareto’s fronts definition is more appropriate.

Another group of graphs shows the distribution of the optimal points in a three-dimensional space of the
mean (Fig. 6a) and the standard deviation (Fig. 6b) of the OF. In both graphs the presence of two very
different tendencies, dependent by the frequency ratio, can be seen. For c less than unit, the distribution
assumes a characteristic ‘‘handle’’ shape.

Better clearly, in Fig. 7, Pareto optimal solutions are plotted in the bi-dimensional DV domain (i.e. in terms
of rTMD and xTMD). Even in this case, a markedly different trend is noticeable in function of the frequency
ratio value. For cp1, the optimal points are very close each other and follow a very precise way. This trend is
restricted to the region of high values of rTMD and of lower ones of xTMD.

Once c increases, becoming larger than the unit, points appear very scattered and distributed in the whole
domain, so it is no longer possible to recognize a well-defined run. It is also important to note that all optimal
solutions start from the same point, but they differ because, in the under-resonance range under-resonance
cp1, points move horizontally toward the left, then bend and go down for smaller values of xTMD and of
rTMD, describing a characteristic ‘‘handle’’ shape. Instead, in the over-resonance range c41, the front moves
toward the right and initially follows a quite defined run, then scatters a lot, achieving higher values of the
damping and lower ones of the variation coefficient.

A synthesis is reported in Table 3.
Fig. 6. Pareto optimal points in mean value (a) and standard deviation (b) of the OF for different values of rTMD and xTMD.
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Fig. 7. Pareto optimal points in the design vector space.

Table 3

Main characteristics of optimal points distribution

Frequency

ratio

Mean trend Variance

trend

Distribution in space state Structural

performance

cp1 Well

defined

Well

defined

Primarily located in the range of low values of xT Low uncertainty at

fixed mean value

c41 Quite

scattered

Very

scattered

Located in the range of high xT values. Initially the front is

well defined, then is scattered in the whole domain

High uncertainty at

fixed mean value
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Finally, Fig. 8 shows Pareto’s optimal solutions plotted over the mean mOF (Fig. 8a) and the standard
deviation sOF surface (Fig. 8b). In the first figure it can be seen that optimal solutions lies in correspondence of
the global minimum point of the mOF surface and then they tend to get further from it as the uncertainty varies.
The points go up in a well-defined trend that seems to follow the bending surface. Nevertheless, only in a very
restricted region of the domain, characterised by larger values of xTMD, the points appear more scattered.

Likewise, in Fig. 8b the optimal solution, are in correspondence of the maximum peaks and then go down
by varying the mean value. Even in this case the Pareto set is well defined and all points are distributed very
close each to another.

In the same figure, the optimal points and the contour lines of the OF surface are plotted overlapped in the
same state space domain with the aim of observing more clearly the location of Pareto solutions with respect
to the traditional optimization function, for frequency ratios. In the case of mean values distribution (column
at left), the optimal points start from the global minimum of the OF mean surface; on the other side, in the
graph of the standard deviation (column at right), the solutions go up from the middle region between the two
peaks. In this representation, the different trend is even more evident: for frequency ratio less than unit, cp1
(Fig. 8c and d), optimal points start, as stated before, from the extreme points and then move toward the left,
both for the mean and for the standard deviation. On the contrary, in case of higher frequency ratio values
cp1 (Fig. 8e and f) the Pareto solutions move toward the right in correspondence of larger xTMD values.
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Fig. 8. OF mean value (first column) and standard deviation (second column) and Pareto solutions plotted in the space state domain of

rTMD and xTMD (respectively, a and b) for different values of frequency ratio c in contour graph; cp1 (c, d), c41 (e, f).
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These considerations are very important in the design chosen of the frequency ratio and the TMD
characteristics, because the optimization structural performance expressed in terms of OF standard deviation
minimization, is very sensitive to these parameters variation.
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8. Summary and conclusions

A robust optimal design criterion for a single TMD device in case of random vibrations is proposed. This
vibration control problem refers to the case of systems subjected to dynamic actions having stochastic nature
that could be modelled by a stochastic process. Robustness is obtained by finding solutions that take into
account not only the absolute performance but also considering its sensitivity to system parameters variation
due to uncertainty. The dynamic input is represented by a random base acceleration, modelled by a stationary
filtered white noise process, in order to take into account loads–structures resonant effects. The main system is
described by a sdof system; it is assumed that structural stiffness and damping, tuned mass ratio, filter main
frequency and damping are affected by uncertainty in their evaluation. In detail, the parameters are described
by a mean value and a variance (standard deviation), assuming that they are all mutually statistically
independent. No other information is considered in order to assume the given probability densities function.
The OF definition is here assumed as main structure covariance displacement. To perform the robust optimum
design, its mean and standard deviations are numerically evaluated. Robustness is formulated as a MOOP, in
which both the mean and the standard deviation of the deterministic OF are minimized. The results show a
significant improvement in performance control and in limitation of the OF dispersion, in comparison with
standard conventional solutions. In detail, some interesting conclusions could be done with reference to the
results obtained for the adopted examples. With reference to TMD effectiveness in vibration reduction, the
real structural performance obtained by using conventional optimization has a reduced effectiveness with
respect to those obtained when system parameters uncertainty is properly considered. With reference to the
obtained robust solutions it can be noted that they are able to control and limit the OF dispersion by limiting
its standard deviation. Moreover, this goal is achieved by finding optimal solutions in terms of DV that
induces an increase of OF mean value. The application of the Pareto concept, to research the solution of the
MOOP, is able to evaluate the optimal choice of the DV, that represents a compromise solution to guarantee
acceptable level relative displacement. An Evolutionary approach by means of a GA has been used to solve the
MOOP and to search the population of non-inferior solutions. Numerical examples show that all assessments
and information drawn by means of this kind of a computational model, cannot be obtained by the use of the
simple conventional optimization technique. The following conclusions can be made:
�
 Robust TMD optimal solutions are obtained by varying the damping ratio by a conventional deterministic
optimization method. This result is independent of the input frequency content. Increasing of xoptTMD

increases with uncertainty.

�
 Robust TMD optimal solutions are obtained by varying the TMD frequency. With reference to this

parameter, the required variation is function of the input frequency content. For frequency ratio co1, the
TMD frequency decreases, meanwhile it must increase if cX1.

The proposed method could also be used when more accurate information about uncertain parameters are
known, for instance by using different probability distributions, as the beta one. Besides, the number of
uncertain sources could be incremented to take into account some other parameters, without a serious
computational cost increment.
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